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ABSTRACT 
Designs for distributed systems must consider the possibility that failures will arise, and must adopt specific failure detection 
and recovery strategies. Many distributed-object systems employ simple techniques to detect and report failures, requiring 
applications to decide upon appropriate recovery strategies. In this paper, we investigate the ability of selected designs for 
service-discovery protocols to detect and recover from failure of remote services when used to support real-time distributed 
control applications. We model two architectures (two-party and three-party) underlying most commercial service-discovery 
systems. We use simulation to quantify functional effectiveness and efficiency achieved by the two architectures as the rate 
of failure increases for remote services. We further decompose non-functional periods into failure-detection latency and 
restoration latency. Our quantitative measurements suggest that a two-party architecture yields better robustness than a three-
party architecture. We discuss the underlying causes for this outcome. 

 



1. INTRODUCTION 
Designs for distributed systems must consider the 
possibility that failures will arise, and must adopt specific 
failure detection and recovery strategies [1]. Much existing 
research surrounding failures in distributed systems focuses 
on providing fault-tolerant invocation of remote methods, 
either through parallel execution of replicated components 
or through automated checkpoint and restart procedures [2-
4]. Fault-tolerant remote-method invocation typically relies 
upon a layer of mechanisms to detect and recover from 
failures without requiring application-specific awareness or 
action. While such application-transparent fault-tolerance 
appears appealing, many current distributed object systems, 
even large systems, employ simpler techniques that detect 
and report failures, requiring applications to decide upon 
appropriate recovery strategies [5-7]. In this paper, we 
investigate one such set of simpler techniques requiring 
application awareness and cooperation. These techniques 
encompass the fundamental failure detection and recovery 
strategies available in service-discovery systems [8-13]. 
In previous work, we investigated change propagation in 
various service-discovery systems under communication 
failure [14] and message loss [15]. Our investigations 
yielded quantitative measures for the effectiveness, 
responsiveness, and efficiency of alternate system designs. 
In this paper, we investigate the effectiveness, efficiency 
and latency of service-discovery systems in detecting 
component failure and locating replacements. We model 
specific discovery strategies and failure-recovery 
techniques in combination with two major architectural 
variants found in service-discovery systems: two-party, 
where clients and services rendezvous directly, and three-
party, where clients and services rendezvous through a 
directory. For the three-party architecture, we consider 
topologies that include directory replicas. Our models, 
which adapt discovery and recovery strategies from the 
Jini™ Networking Technology [10] and Universal Plug-
and-Play [9] specifications, layer a real-time distributed 
control application above each of the discovery systems. 
We model application-level strategies that focus our 
experiments on the fundamental properties of service-
discovery protocols; thus, we exclude a number of possible 
application choices, such as service caching. We measure 
functional effectiveness, defined as the proportion of time 
that a distributed application meets its requirements, or 
more precisely, as the proportion of time that a client 
component possesses an operational set of remote services 
needed to accomplish its task. To provide a clear picture of 
failure response, we also measure both failure-detection 
latency (time required to recognize that a remote service 
used by the client has failed) and failure-recovery latency 
(time required for the client to replace a failed service). We 
also measure overhead as the number of messages sent. 
Our models are written using Rapide [16], which records 

complete event traces that permit detailed analysis of 
system behavior, helping us to determine causes underlying 
quantitative performance. 

2. DISCOVERY AND RECOVERY  
Service-discovery protocols enable networked components 
to rendezvous and to combine with discovered components 
into distributed applications meeting specific requirements. 
Discovery protocols include failure-detection and recovery 
techniques that enable components within distributed 
applications to detect and react to failures by restoring 
communications with remote components or by locating 
alternate components. A number of different designs have 
been proposed for service-discovery systems. For example, 
a team at Sun Microsystems designed Jini Networking 
Technology, a general service-discovery system atop 
JavaTM. As another example, a group from Microsoft and 
Intel conceived Universal Plug-and-Play (UPnP) to provide 
plug-and-play components for distributed systems. 

2.1 Service Discovery 
Our analysis of six discovery systems [8-13] revealed that 
most designs use one of two underlying architectures: two-
party or three-party. A two-party architecture consists of 
two component types: service manager (SM) and service 
user (SU). The three-party architecture adds a third 
component type, service cache manager (SCM). Multiple 
SCMs can be used to mitigate the effect of SCM failure. In 
both architectures, service discovery occurs passively, via 
multicast announcements, and actively, via multicast 
queries. Each SM maintains a database of service 
descriptions (SDs), where each SD encodes the essential 
characteristics of a particular service provider (SP) 
managed by the SM. Each SU seeks SDs satisfying specific 
requirements.  Where employed, the SCM operates as an 
intermediary, matching advertised SDs of SMs to SD 
requirements provided by SUs. 
In this study, each SM manages one SP from among three 
service types: fast sensor, slow sensor, and actuator. Our 
experiment consists of four instances of each service type, 
whose roles are explained below. Figure 1 shows a two-
party architecture deployed in our experiment topology 
with 12 SMs and one SU. To animate our two-party model, 

Figure 1. Two-party service-discovery architecture 
with one service user and 12 service managers 
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we incorporated discovery behaviors from the UPnP 
specification, as described elsewhere  [14, 15]. Figure 2 
shows the three-party architecture in our experimental 
topology: with 12 SMs, one SU, and up to three SCMs. To 
animate our three-party model, we chose discovery 
behaviors from the Jini specification, as described 
elsewhere [14, 15].  

2.2 Failure-Detection Techniques  
To detect failures, applications using discovery systems 
rely on a combination of two techniques: monitoring 
periodic transmissions and retrying ad hoc transmissions  
(where exceeding a retry bound causes an exception). 
Discovery protocols specify periodic transmission of key 
messages. In addition, components employing remote 
services may maintain regular contact to accomplish 
application-specific tasks. Components can listen for these 
recurring messages, much as a heartbeat can be monitored 
to assess patient health. For example, both Jini and UPnP 
periodically announce resource availability. Similarly, a 
sensor service may periodically issue readings to its clients. 
Failure to receive scheduled communications might 
indicate that the remote service has failed, or that the 
channel between client and service is blocked. In other 
situations, software components send messages using 
reliable communication protocols, which persistently 
resend unacknowledged messages up to some bound, 
issuing a remote exception (REX) if the bound is exceeded. 
For example, a client may attempt to invoke a method 
offered by a remote service that has failed. In the three-
party architecture, a SU might attempt to query for a SD 
from a failed SCM, only to receive a REX. Failure 
detection enables components to employ recovery 
techniques. 

2.3 Failure-Recovery Techniques  
Discovery systems generally support two recovery 
techniques: soft-state and application-level persistence. 
Periodic announcements issued by a component convey 
soft information about component state, which a receiver 
can cache for a period of time, consistent with the expected 

announcement rate. Each new announcement may convey 
updated state information; thus, a receiver overwrites 
previously cached state with state from newly arriving 
announcements. When an announcement fails to arrive, a 
receiver discards previously cached state, effectively 
eliminating knowledge about existence of the announcing 
component. When announcements resume, a receiver 
rediscovers the remote component and recovers the latest 
component state. Our application uses a modified form of 
soft state, which allows discarded components to be either 
rediscovered or replaced. For example, upon failure of 
heartbeat messages sent by UPnP SMs to refresh cached 
SDs, a SU discards knowledge of the SM and any 
associated SDs. Similarly, a SU may discard knowledge of 
a SM and SD for a remote sensor upon failure to receive 
sensor updates. To effect recovery, UPnP SUs may 
commence periodic multicast (Msearch) queries to search 
for a new instance of a required service. Once the SU 
regains a SD meeting requirements, the related queries 
cease. In Jini, loss of contact with a service may cause the 
SU to query a SCM for a replacement. In addition, service 
unavailability may be indicated by failure of heartbeat 
messages sent by Jini SMs to refresh SDs cached on SCMs, 
causing the SCM to discard the SD and to notify SUs that 
indicated interest in learning about service failures. 
Periodic announcements ensure rediscovery of the SCM by 
SMs within 120s after the SM recovers. The Jini SU can 
then receive the corresponding SD through notification or 
query. Of course, in Jini, SCMs could also fail. SCM 
startup announcements ensure rediscovery of a restarted 
SCM within 30s.   
When failures lead to a REX, discovery systems generally 
expect application software to initiate recovery, guided by 
an application-level persistence policy, which might ignore 
the REX, retry the operation for some period, or discard 
knowledge of the remote component. Since our experiment 
simulates a real-time control application, we chose not to 
persist after a REX, but instead to discard knowledge of the 
associated remote component, relying on periodic 
announcements and soft state to recover. This policy is also 
used in the three-party model when SCM failure is detected 
through a REX in response to a query (SU) or registration 
refresh (SU or SM). After discarding knowledge of a SM 
(UPnP) or SCM (Jini), all operations involving the remote 
component cease.  

3. EXPERIMENT DESCRIPTION 
We investigate how effectively the two alternate service-
discovery architectures, and associated failure detection 
and recovery mechanisms, provide clients with required 
services as nodes hosting the services fail and recover.  We 
model the two- and three-party architectures using the four 
topologies shown in Figures 1 and 2. In all topologies, we 
deploy a single SU and twelve SMs, where each SM 
manages a specific type of SP: “fast” sensor, “slow” 

Figure 2. Three-party service-discovery architecture 
with one service user, 12 service managers, and up 
to 3 service cache managers 
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sensor, or actuator. The twelve SMs include four of each 
SP type. After discovery and activation by the SU, a “fast” 
sensor transmits a reading every two seconds and a “slow” 
sensor transmits a reading every 30 seconds. Once 
discovered and activated by the SU, an actuator can be 
invoked after the SU receives an appropriate combination 
of readings from a “fast” and “slow” sensor. In our 
experiment, we simulate actuation attempts using a uniform 
distribution with a mean of 60s.  When the SU holds one 
SD for a SP of each type (“fast” sensor, “slow” sensor, and 
actuator) and each of the SPs is operational, then the 
application is considered functional.  If the SU lacks SDs 
for one or more SP type or if one or more of the SDs held 
by the SU describes a SP that is not operational, then the 
application is considered non-functional. The experiment 
measures accumulated functional time in proportion to a 
duration D during which SMs and SCMs periodically fail 
and recover. To establish initial conditions, each topology 
is exercised until discovery completes, and the application 
becomes functional. To focus exclusively on failure 
detection and recovery processes, we do not cache services; 
the SU holds at most one SD for each SP type at any time. 
In the three-party architecture, some additional decisions 
are necessary. For each SD discovered and retained, the SU 
registers with the SCM for notification about failures. The 
SU refreshes notification registrations every 300s. Each 
SM registers with each discovered SCM, and refreshes 
every 60s (slow sensors/actuators) or 300s (fast sensors).  

3.1 Failure Model 
During D, each SM (and SCM in the three-party case) fails 
randomly and independently, although at least one service 
of each type always remains active so that the application 
could become functional. We calculate a mean time to 
failure, MTF, from a failure rate R, varied from 0.1 to 0.9 
of D in 0.1 increments, where MTF = (1 – R) * D. We 
choose node failure times from a “stepped” normal 
distribution with three steps: a 0.15 probability that failure 
occurs before (MTF - 0.2 * MTF), a 0.7 probability that 
failure occurs between (MTF - 0.2 * MTF) and (MTF + 0.2 
* MTF), and a 0.15 probability that failure occurs between 
(MTF + 0.2 * MTF) and (2 * MTF). Failure time is 
distributed uniformly within each step. 
When a SM or SCM fails, affected services become 
unavailable for a time. There are three failure classes, each 
with a different probability, P, and duration.  Short failures 
occur with P = 0.1 for a fixed duration (135s); intermediate 
failures occur with P = 0.7 for a duration selected 
uniformly on the interval 180-300s, long failures occur 
with P = 0.2 selected uniformly on the interval 480-600s. 

3.2 Metrics  
We define non-functional time, NF, as accumulated time 
during which an application is in a non-functional state. 
Assuming we can measure NF, over a given duration D, 

then functional effectiveness, F, can be quantified as a 
ratio: F = (D – NF)/D. We define consistency conditions to 
measure NF, as explained below. 
A client in a distributed application may become non-
functional due to failure of remote components but incur a 
delay before detecting the failure. We call this delay 
failure-detection latency. After detecting a non-functional 
state, the application may incur some delay while restoring 
required services. We call this delay failure-recovery 
latency. During periods when a client incurs either failure-
detection or failure-recovery latency or both (the states can 
overlap when a client requires more than one remote 
service), the distributed application is non-functional. We 
accumulate such non-functional periods to NF. 
We define two consistency conditions such that violation 
of one corresponds to failure-detection latency and 
violation of the other corresponds to failure-recovery 
latency. The following consistency condition requires each 
SD held by a SU to match a SD managed by a SM.  More 
formally, 
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This condition (CC-1) is violated (and failure-detection 
latency commences) when a SM fails but the SU holds a 
SD provided by the SM. Once the SU discards the SD, or 
the SM recovers, consistency is restored (and failure-
detection latency ends). A second consistency condition 
requires that available SDs matching SU requirements 
should be known to the SU. More formally, 
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This condition (CC-2) is violated (and failure-recovery 
latency begins) after the SU purges a SD for a failed 
service and commences search. Consistency returns (and 
failure-recovery latency ends) when the SU finds a SD 
matching its needs.  

4. RESULTS AND DISCUSSION  
For each of four topologies (two-party and three-party with 
one, two, and three SCMs), we set D = 1800s and executed 
multiple repetitions for each value of R using the failure 
model described in 3.1. We conducted separate experiment 
runs for cases where failed nodes (including SMs and 
SCMs) are discarded and replaced by new nodes, and for 
cases where failed nodes restart, maintaining persistent 
information in the manner specified by the protocols. For 
the replacement case, we ran a second variant of the 
experiment where all SMs for a resource type may fail. We 
recorded functional effectiveness, detection latency, 
recovery latency, and the total number of messages 
exchanged in each run.   



4.1 Effectiveness and Efficiency 
Figure 3 shows average functional effectiveness of the two-
party and three-party architectures for the replacement case 
as R increases, and where one SM for each service type is 
always available (implying that the system could be 
functional for all of D). In examining Fig. 3, recall how 
failure detection occurs. In the two-party model, the SU 
may detect service unavailability by monitoring cyclical 
sensor readings or by monitoring notification registration 
refreshes. In the three-party model, the SCM notifies the 
SU if the SM fails to refresh service registrations. In both 
models, the SU may also detect unavailability when a REX 
occurs in response to attempted actuations. To become 
functional again, the SU must invoke appropriate recovery 
mechanisms to regain SDs to replace unavailable services.  
In the three-party architecture, at least one SCM must be 
operational for recovery to succeed. During periods when 
all SCMs fail, the SU is unable to recover needed services, 
increasing non-functional time. 

Overall, the two-party architecture proves more effective 
above 60% failure rate, allowing the SU to remain 
functional for as much as 80% of D even when the failure 
rate reaches 80% (MTF = 360s). At rates below 60% the 
effectiveness of two-party is comparable to three-party 
with two and three SCMs. Fig. 3 also shows that 
effectiveness improves for the three-party architecture as 
the number of SCMs increase, though even with 3 SCMs, 
performance does not equal that of the two-party 
architecture. Adding SCMs improves effectiveness by 
lowering the incidence of concurrent failure of all SCMs. 
Message counts (Fig. 4) reveal the two-party architecture to 
be significantly more efficient than the three-party 
architecture. Note also that for the three-party architecture, 
total message counts decrease as failure rate increases, 
because SCMs remain down for longer periods; thus, 
requiring fewer registration refresh and SCM heartbeat 
messages. For the two-party model, message counts 

increase slightly at high failure rates because the SU 
invokes active recovery procedures after detecting failures. 
Fundamentally, the three-party architecture relies on 
redundancy of SCMs to improve functional effectiveness; 
thus, exacting a high overhead at low failure rates, but 
permitting overhead to diminish as failure rate increases. 
The two-party architecture relies on active recovery 
invoked by a SU; thus, at low failure rates overhead is 
lower because recovery procedures are not invoked often, 
but overhead increases with failure rate as recovery 
procedures are invoked more often. 

4.2 Underlying Causes 
To better understand differences in effectiveness among the 
alternate architectures, we decomposed non-functional time 
to show the estimated proportion attributable to failure-
detection latency and to failure-recovery latency. Figure 5 
shows that detection latency is the dominant (~80%) 
component of non-functional time for the two-party model. 
Analysis of execution traces using the Rapide toolset 
showed most failures were detected through missed sensor 
readings (2s for fast sensors and 30s for slow sensors) or 
REXs received in response to failed actuations. We 
suspected that in the two-party architecture detection 
latency, and therefore non-functional time, could be 
reduced by increasing registration-refresh frequency; thus, 
decreasing the interval between heartbeats. Failed 
notification refresh attempts by the SU would permit 
detection of SM unavailability (and violation of CC-1) 
before non-receipt of slow sensor readings or failed 
actuation attempts. To test this theory, we lowered the 
registration refresh frequency from 300s to 30s in the two-
party model, and reran the experiment The result was a 
49% drop in detection latency leading to a 2.6% overall 
improvement in functional effectiveness (an increase in the 
mean effectiveness across all failure rates from 0.908 to 
0.932). However, efficiency decreased 69%, with a rise in 
message count from an average of 662 to 1116. Similarly 

Figure 4. Average message counts for four topologies 
under increasing R for the replacement case where at 
least one SM of each type is operational (30 reps/point)

Figure 3. Functional effectiveness for four topologies 
under increasing R for the replacement case where at
least one SM of each type is operational (60 reps/point) 
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in the three-party architecture, we suspect increasing 
refresh frequency for service registrations would lead to 
earlier detection by the SCM of SM failure [see 17], and to 
earlier notification for the SU. Of course, increasing the 
heartbeat rate also would decrease efficiency. 

Our data for the three-party architecture show that above 
60% failure rate the incidence of concurrent failure of all 
SCMs increases steadily. This precludes finding available 
services meeting SU requirements; thus, leaving the system 
in violation of CC-2. To restore consistency and achieve 
operational functionality, a SCM must first recover, accept 
registrations for the SU and available SMs, and then 
propagate matching SDs to the SU.  Lacking an ability to 
directly discover SMs, the SU remains non-functional 
while awaiting recovery of at least one SCM. These effects 
are evident in Fig. 6, which shows the proportion of 
recovery latency increasing for the three-party model (3 
SCMs) as the failure rate rises. This trend is more marked 
as the number of SCMs decreases (not shown here). We 
speculate that functional effectiveness might improve for 
the three-party model if SUs were permitted to discover 
SMs directly when no SCMs are available. We plan 
experiments along these lines using the Service Location 

Protocol (SLP) [12], which enables switching between the 
two- and three-party architecture as the situation warrants. 

4.3 Results for Experiment Variants    
To confirm our findings, we varied the experiment in two 
respects. First, we changed node behavior to allow failed 
nodes to restart rather than be replaced by new nodes.  In 
this case, three-party SCMs that recovered were allowed to 
retain previous, unexpired service registrations and 
notification registrations in accordance with the Jini 
protocol, while two-party SMs were permitted to retain 
notification registrations. The results showed no significant 
differences in performance between the restart and 
replacement cases, the graphs (not shown) were almost 
identical. This occurs in the three-party case because most 
of the persistent registrations expire by the time a failed 
SCM restarts. In the two-party case, where only 
notification registrations persist, the SU that registered the 
notification is likely to have discarded knowledge of the 
SM by the time it restarts. Since, in our experiment, 
restarting nodes derive little value from persistent 
information, functional effectiveness is mainly influenced 
by soft-state mechanisms, as in the replacement case.  
Second, we varied the experiment to permit all SMs to fail, 
rather than to have at least one SM always available for 
each service type. The graphs (not shown) illustrate 
functional effectiveness for both the two- and three-party 
models decreases substantially above R = 60%, as the 
incidence of concurrent SM failures increases, resulting in 
extended periods when no SMs were available for a service 
type needed by the SU. Though the absolute functional 
effectiveness declined, the ranking of the curves remained 
the same as in the previous experiments, with the two-party 
model proving most effective followed by the three-party 
model with three-, two-, and one-SCM topologies, 
respectively. Thus, in all of our experiment variants, the 
two-party model achieved better functional effectiveness 
than the three-party model. 

5. CONCLUSIONS 
This study provides an initial characterization of the 
performance of service-discovery architectures in response 
to node failures, which complements our previous studies 
of response to communication failures and message loss. 
The present study shows that in response to node failure, 
two-party systems exhibit better functional effectiveness 
and efficiency than three-party systems, with three-party 
SCMs being a potential point of vulnerability. Possible 
solutions to mitigate this vulnerability require further study. 
Similarly, further research is needed to verify that 
registration refresh rates or service caching could improve 
functional effectiveness.  Finally, we need to verify that our 
conclusions hold in networks with large numbers of 
services. 

Figure 6. Detection and restoration latencies in three-
party service-discovery model with 3 SCMs as a
proportion of non-functional time (also shown) (60
reps/point) 

Figure 5. Detection and restoration latencies in 
two-party service-discovery model as a proportion
of non-functional time (also shown) (60 reps/point)
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